Math, asked by adarshyadav3738, 1 month ago

if sin(A+B)=1 and cos(A-B)=1;0°<A+B<=90°,A>=B,find A and B​

Answers

Answered by amansharma264
42

EXPLANATION.

⇒ sin(A + B) = 1. - - - - - (1).

⇒ cos(A - B) = 1. - - - - - (2).

⇒ 0° < A + B ≤ 90°.

⇒ A > B.

As we know that,

We can write equation as,

⇒ sin(A + B) = sin(90°). - - - - - (1).

⇒ cos(A - B) = cos(0°). - - - - - (2).

We get,

⇒ A + B = 90°. - - - - - (1).

⇒ A - B = 0°. - - - - - (2).

Adding equation (1) & (2), we get.

⇒ 2A = 90°.

⇒ A = 45°.

Put the value of A = 45° in equation (1), we get.

⇒ A + B = 90°.

⇒ 45° + B = 90°.

⇒ B = 90° - 45°.

⇒ B = 45°.

Value of A = 45° & B = 45°.

                                                                                                                       

MORE INFORMATION.

(1) = sin²θ + cos²θ = 1.

(2) = 1 + tan²θ = sec²θ.

(3) = 1 + cot²θ = cosec²θ.

Answered by SarcasticBunny
34

Given that, If sin( A + B ) = 1 and cos( A - B ) = 1 , 0° < A+B < = 90°, A>= B and we need to find A and B.

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

Information given ::

  • sin(A + B) = 1
  •  cos(A - B) = 1
  • 0° < A + B ≤ 90°
  • A > B

As we know that,

We can write the equations as,

⇒ sin( A + B ) = sin( 90° )  

⇒ cos( A - B ) = cos( 0° )  

 

H E N C E

⇒ A + B = 90° - [ i ]  

⇒ A - B = 0° - [ ii ]  

  • Adding equation [ i ] and [ ii ]  

➵ 2A = 90°

➵ A = 90°/2

A = 45°

  • Putting the value of A = 45° in equation [ i ]  

➵ A + B = 90°  

➵ 45° + B = 90°  

➵ B = 90° - 45°  

B = 45°

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

Henceforth, value of A = 45°  and B = 45°

Similar questions