Math, asked by rinku797355, 9 months ago

If sin(A+B)=1 and sin(A-B)=1/2,then the value of A is *

Answers

Answered by gyash1417
0

Step-by-step explanation:

sin(a+b)=sin90

a+b=90---1

sin(a-b)=sin30

a-b=30---2

solving 1 and 2

1+2:-

a+b+a-b=90+30

2a=120

a=60

putting value of a in1

b=30

PLEASE MARK ME AS BRAINLIEST

Answered by Anonymous
6

Given :-

  • Sin( A+B ) = 1

  • Sin (A-B) = ½

To Find :-

  • Value of A

Solution :-

\sf{\red{\implies} \sin [A+B] =  1 }\\

\sf{\red{\implies} \sin [A-B] =  \dfrac{1}{2} }\\

\sf{\red{\implies} \sin [A+B] = \sin \dfrac{\pi}{2} }\\

\sf{\red{\implies} \sin [A-B] = \sin \dfrac{\pi}{6} }

\sf{\red{\implies} [A+B] =  \dfrac{\pi}{2}\;\; eq1st }\\

\sf{\red{\implies} [A-B] =  \dfrac{\pi}{6} \;\; eq2 }

Adding eq1 from 2nd

\sf{\red{\implies} A-B + A  + B  =  \dfrac{\pi}{6} + \dfrac{\pi}{2}   }

\sf{\red{\implies} 2A =  \dfrac{\pi}{6} + \dfrac{\pi}{2}   }

\sf{\red{\implies} 2A =  \dfrac{\pi + 3 \pi}{6}    }

\sf{\red{\implies} 2A =  \dfrac{4 \pi}{6}  }

\sf{\red{\implies} 2A =  \dfrac{2 \pi}{3}  }

Taking 2 common both sides

\sf{\red{\implies}[A] =  \dfrac{\pi}{3}    }

Similar questions