If sin(a+b)=1 and tan(a-b)= 1/√3 find tan a + cot b and sec a - cosec b
Answers
Answer:
tanA + CotB = 2√3 and SecA - CosecB = 0
Step-by-step explanation:
Given---> Sin( A + B ) = 1 and tan ( A - B ) = 1 /√3
To find---> tanA + CotB = ? and
SecA - CosecB = ?
Solution---> ATQ,
Sin ( A + B ) = 1
=> Sin( A + B ) = Sin 90°
=> A + B = 90° ..........................(1)
tan ( A - B ) = 1 / √3
=> tan ( A - B ) = tan 30°
=> A - B = 30°
=> A = 30° + B ......................(2)
Putting A = 30° + B in equation ( 1 ) , we get
=> 30° + B + B = 90°
=> 2B = 90° - 30°
=> 2B = 60°
=> B = 60° / 2
=> B = 30°
Putting B = 30° in equation (2) , we get
=> A = 30° + B
=> A = 30° + 30°
=> A = 60°
Now , tanA + CotB = tan60° + Cot30°
= √3 + √3
= 2 √3
Now, SecA - CosecB = Sec 60° - Cosec30°
= 2 - 2
= 0