If sin(A+B)=√3/2 and cos(A-B)=1/√2,find the value of A andB and the value of tan(A+B) and tan (A-B)
Answers
Answered by
1
Hey dear your qsn ans i write following.
sin(A+B)=√3/2
sin(A+B)=sin60°
=> A+B=60° eqsn no(1)
and cos(A-B)=1/√2
=> cos(A+B)=cos45°
=> A+B=45° eqsn no(2)
now, eqsn no(1)+eqsn no(2)=>2A=105° so,A=52.5°
same, eqsn no(1)-eqsn no(2)=>2B=15°,so, B=7.5°
now ,
we know that,
![sin(a - b) = \sqrt{1 - cos {}^{2}(a - b) } sin(a - b) = \sqrt{1 - cos {}^{2}(a - b) }](https://tex.z-dn.net/?f=sin%28a+-+b%29+%3D++%5Csqrt%7B1+-+cos+%7B%7D%5E%7B2%7D%28a+-+b%29+%7D+)
sin(A-B)=√3/2
same typ...
![cos(a + b) = \sqrt{1 - sin {}^{2}(a + b) } \\ cos(a + b) = \sqrt{1 - sin {}^{2}(a + b) } \\](https://tex.z-dn.net/?f=cos%28a+%2B+b%29+%3D++%5Csqrt%7B1+-+sin+%7B%7D%5E%7B2%7D%28a+%2B+b%29+%7D++%5C%5C+)
cos(A+B)=1/2
there for ...
tan(A+B)=sin(A+B)/cos(A+B)
=(√3/2)/(1/2)
=√3.
tan(A-B)=sin(A-B)/cos(A-B)
=(√3/2)/(1/√2)
=√3/√2.
I hope you find your qsn ans.
sin(A+B)=√3/2
sin(A+B)=sin60°
=> A+B=60° eqsn no(1)
and cos(A-B)=1/√2
=> cos(A+B)=cos45°
=> A+B=45° eqsn no(2)
now, eqsn no(1)+eqsn no(2)=>2A=105° so,A=52.5°
same, eqsn no(1)-eqsn no(2)=>2B=15°,so, B=7.5°
now ,
we know that,
sin(A-B)=√3/2
same typ...
cos(A+B)=1/2
there for ...
tan(A+B)=sin(A+B)/cos(A+B)
=(√3/2)/(1/2)
=√3.
tan(A-B)=sin(A-B)/cos(A-B)
=(√3/2)/(1/√2)
=√3/√2.
I hope you find your qsn ans.
Similar questions