if sin (A+B-C) 1/2 , cos (B+C-A) = 1/√2. Find A , B and C
Plzz answer if you know
Answers
Answer:
Given,
A + B + C = 180° ⟶ (1)
sin (A + B − C) = 1/2 ⟶ (2)
cos(B + C − A) = 1/√2 ⟶(3)
Now from (1)
A + B = Π − C⟶(4). (Here Π is some angle or 'x')
∴ Using (4) we can rewrite (2) as
sin (Π − 2C) = 1/2
⇒sin 2C = 1/2. (∵sin (Π − θ) = sinθ)
⇒sin 2C = 1/2
∴ 2C = 30° or 150° (∵ sin 30° = 1/2)
⇒C = 15° or 75° (∵ sin 150° = 1/2)
Again from (1)
B + C = Π − A
∴ cos (B + C − A) = 1/√2
⇒cos (Π − 2A) = 1/√2
⇒−cos 2A = 1/√2 (∵ cos(Π−θ)=−cosθ)
⇒cos 2A = -1/√2
∴ 2A = 135°. (∵ cos135° = -1/√2)
⇒A = 67.5°
Case 1 : For C = 15°
Case 2 : For C = 75°
A = 67.5°
∴ B = 180° − (15° + 67.5°) B = 180° −(67.5° + 75°)
= 180° − 82.5° = 97.5° = 37.5°
Since ΔABC is acute angled, thereby n none of the angles can be more than 90°
Hence ∠A = 67.5° , ∠B = 37.5 , ∠C = 75°
HOPE IT HELPS !!
PLEASE MARK MY ANSWER AS BRAINLIEST !!!