If sin????=a/b, find sec????+tan???? in terms of a and b.
Answers
Answered by
0
Answer:
answer is thita I hope this helps you
Answered by
2
secθ + tanθ = √(b+a)/(b-a)
Step-by-step explanation:
Given: sinθ = a / b
To find: secθ + tanθ in terms of a and b.
Solution:
Sinθ = Opposite / Hypotenuse = a/b
Adjacent = √Hypotenuse² - Opposite² = √(b²- a²)
Cosθ = Adjacent / Hypotenuse = √(b²- a²) / b
Now secθ + tanθ = 1/cosθ + Sinθ/Cosθ
= (1 + Sinθ) / Cosθ
= (1 + Sinθ) Cosθ/ Cos²θ
= (1 + Sinθ) Cosθ / 1 - Sin²θ
= (1 + Sinθ) Cosθ / (1 + Sinθ) (1 - Sinθ)
= Cosθ / 1 - Sinθ
= √(b²- a²) / b / 1-a/b
= √(b²- a²) / (b-a)
= [√(b + a)(b-a)] / (b-a)
= √(b+a)/(b-a)
So secθ + tanθ = √(b+a)/(b-a)
Similar questions
Math,
5 months ago
Physics,
5 months ago
India Languages,
11 months ago
English,
1 year ago
Math,
1 year ago