If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
Answers
Answered by
9
SOLUTION :
Given :
sin(A – B) = sin A cos B – cos A sin B
and, cos (A – B) = cos A cos B + sin A sin B
We need to find, sin 15° and cos 15°.
Let A = 45° and B = 30°
sin(A – B) = sin A cos B – cos A sin B
sin (45° - 30°) = sin 45° cos 30° – cos 45° sin 30°
sin 15° = sin 45° cos 30° – cos 45° sin 30°
=(1/√2 × √3/2) - (1/√2 ×1/2)
[sin 45°=1/√2 , cos 30°= √3/2, cos 45°= 1/√2, sin 30°= ½]
= √3/2√2 −1/2√2
sin 15° = (√3 -1) /2√2
cos (A – B) = cos A cos B + sin A sin B
cos (45° - 30°) = cos 45° cos 30° – sin 45° sin 30°
cos 15° = cos 45° cos 30° – sin 45° sin 30°
= (1/√2 × √3/2) + (1/√2 ×1/2)
[sin 45°=1/√2 , cos 30°= √3/2, cos 45°= 1/√2, sin 30°= ½]
= √3/2√2 + 1/2√2
cos 15° = (√3 +1) /2√2
Hence, the values of sin 15° = (√3 -1) /2√2 and cos 15° = (√3 +1) /2√2.
HOPE THIS ANSWER WILL HELP YOU…
Similar questions
English,
6 months ago
Geography,
6 months ago
Math,
6 months ago
Accountancy,
1 year ago
Chemistry,
1 year ago