Math, asked by aryavkhural23, 2 days ago

If Sin (A + B) = Sin A× Cos B+ Cos A× Sin B. find the value of A snd B​

Answers

Answered by velpulaaneesh123
3

Answer:-

Hi ,

__________________

sin( A + B ) = sinAcosB + cosAsinB

 ___________________

1 ) Here , we assume

A = 45° , B = 30°

cos 15°

= cos ( 90 - 75 )

= sin 75 °

= sin ( 45 + 30 )

= sin45cos30 + cos45sin30

= ( 1/√2 )( √3/2 ) + ( 1/√2 ) ( 1/2 )

= ( √3/2√2) + 1/2√2

= ( √3 + 1 )/2√2

Therefore ,

cos15° = sin75° = ( √3 + 1 )/2√2

\pink{\huge{\boxed{\mathfrak{ Hope \: its \: help \: You}}}}

 

Answered by Anonymous
20

ANSWER

__________________

 \bf{sin( A + B ) = sin \: A \: cos \: B + cos \: A \: sin \: B}

 ___________________

 \bf {1 ) Here , we   \: assume }\\  \\   \bf{A = 45° , B = 30° }  \\  \\ cos \:  \bf{15° = cos( 90- 75 ) }\\  \\  \bf{= sin 75 °= sin ( 45 + 30 ) }\\  \\ \bf{ =  sin \: 45 \: cos \: 30 + cos  \: 45 \:  sin \: 30 }\\  \\= ( 1/√2 )( √3/2 ) + ( 1/√2 ) ( 1/2 )\\  \\= ( √3/2√2) + 1/2√2 \\  \\ = ( √3 + 1 )/2√2

\bf{Hence}

 \bf{cos \: 15° = sin \: 75° = ( √3 + 1 )/2√2} \:

Similar questions