Math, asked by ritikagurjar29, 1 year ago

if sin ( A+B) = sin A cos B + cos A sin B. then find the value of sin 75°​

Answers

Answered by patilcourt
5

Answer:Sin 75 = Sin (30 + 45)

  = Sin 30 Cos 45 + Sin 45 Cos 30

  = (1 / 2) (1 / root2) + (1 / root2) (root3 / 2)

  = (1 / 2 root2) + (root 3 / 2 root2)

  = (1 + root3) / 2 root2

On rationalising :-

(1 + root3) (2 root2) / (2 root2) (2 root2)

(2 root2 + 2 root6) / 8

2 (root2 + root6) / 8

(root2 + root6) / 4

Therefore Sin75 = (root2 + root6) / 4

Step-by-step explanation:Hope this helps u plz mark me as the brainliest

Answered by pk515494
2

Answer:

given \:  \sin(75)  \\

sin(A+B)=sinAcosB+cosAsinB

 \sin(75 )  =  \sin(45 + 30) \\  =  \sin(45)  \cos(30)  +  \cos(45)  \sin(30) \\  =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}  \\  =  \frac{ \sqrt{3} }{2 \sqrt{2} }  +  \frac{1}{2 \sqrt{2} }  \\  =   \frac{ \sqrt{3 } + 1 }{2 \sqrt{2} }  \: here \: is \: your \: answer \\

hope it will help you

mark me as a brainliest please

Similar questions