If sin (A + B) = Sin A cos B + cos A sin B, then find the value of cos 15° and sin 75°
Answers
Answered by
191
(ii) Sin 75 = sin (45+30)
Sin ( 45 +30) = sin45 cos30 + cos45 sin30
= 1/√2 * √3/2 + 1√2* 1/2
= √3/2√2 + 1/ 2√2
= √3 +1 / 2√2
multiplying with √2,
(√3 + 1) * √2/ 2√2 *√2
= √6 + √2/ 4
(i) cos 15= cos(45-30)
cos(45-30) = cos 45 cos30 - sin45 sin 30
= 1/√2 * √3/2 - 1√2 * 1/2
= √3 - 1/ 2√2
multiplying with √2,
(√3 - 1) * √2/ 2√2 *√2
= √6 - √2/ 4
hope it helps.... :)
Sin ( 45 +30) = sin45 cos30 + cos45 sin30
= 1/√2 * √3/2 + 1√2* 1/2
= √3/2√2 + 1/ 2√2
= √3 +1 / 2√2
multiplying with √2,
(√3 + 1) * √2/ 2√2 *√2
= √6 + √2/ 4
(i) cos 15= cos(45-30)
cos(45-30) = cos 45 cos30 - sin45 sin 30
= 1/√2 * √3/2 - 1√2 * 1/2
= √3 - 1/ 2√2
multiplying with √2,
(√3 - 1) * √2/ 2√2 *√2
= √6 - √2/ 4
hope it helps.... :)
Answered by
179
Hi ,
***************************
sin( A + B ) = sinAcosB + cosAsinB
**********************************
1 ) Here , we assume
A = 45° , B = 30°
cos 15°
= cos ( 90 - 75 )
= sin 75 °
= sin ( 45 + 30 )
= sin45cos30 + cos45sin30
= ( 1/√2 )( √3/2 ) + ( 1/√2 ) ( 1/2 )
= ( √3/2√2) + 1/2√2
= ( √3 + 1 )/2√2
Therefore ,
cos15° = sin75° = ( √3 + 1 )/2√2
I hope this helps you.
: )
***************************
sin( A + B ) = sinAcosB + cosAsinB
**********************************
1 ) Here , we assume
A = 45° , B = 30°
cos 15°
= cos ( 90 - 75 )
= sin 75 °
= sin ( 45 + 30 )
= sin45cos30 + cos45sin30
= ( 1/√2 )( √3/2 ) + ( 1/√2 ) ( 1/2 )
= ( √3/2√2) + 1/2√2
= ( √3 + 1 )/2√2
Therefore ,
cos15° = sin75° = ( √3 + 1 )/2√2
I hope this helps you.
: )
Similar questions