if sin (A+B)=sin A cos B+cos A sin B then find the value of sin 75° & cos 15°
Answers
Answered by
6
Hello friend
Good afternoon
Your answer is given in the attachment :
I hope it will help you a lot
Thanks
Have a great say ♠️♠️♠️♠️♠️♠️
Good afternoon
Your answer is given in the attachment :
I hope it will help you a lot
Thanks
Have a great say ♠️♠️♠️♠️♠️♠️
Attachments:
Answered by
4
Hey !!!
If sin (A + B ) = sinA *cosB + cosA *sinB
We can write sin75° = sin ( 30° + 45° ) similarly
hence , sin(30° + 45° ) = sin30° ×cos45° + cos30° ×sin45°
=> 1/2 × 1/√2 + 1/2 ×1/√2 [putting value of each identity]
=> 1/2*1/√2 + √3/2*1/√2
=> 1/2√2 + √3/2√2
=> 1 + √3
---------------- Answer ✔
2√2 .
___________________________
2nd ,
cos15° = cos ( 45° - 30° )
•°• cos ( A - B ) = cosA ×cosB + sinA ×sinB
hence , cos15 ° = cos (45 ° - 30° )
= cos45° ×cos30° + sin45° × sin30°
= 1/√2 × √3/2 + 1/√2× 1/2
= √3 + 1
---------------
2 √2
hence , here sin75° = cos15° = √3 + 1 /2√2
_________________________
Hope it helps you !!
@Rajukumar111
If sin (A + B ) = sinA *cosB + cosA *sinB
We can write sin75° = sin ( 30° + 45° ) similarly
hence , sin(30° + 45° ) = sin30° ×cos45° + cos30° ×sin45°
=> 1/2 × 1/√2 + 1/2 ×1/√2 [putting value of each identity]
=> 1/2*1/√2 + √3/2*1/√2
=> 1/2√2 + √3/2√2
=> 1 + √3
---------------- Answer ✔
2√2 .
___________________________
2nd ,
cos15° = cos ( 45° - 30° )
•°• cos ( A - B ) = cosA ×cosB + sinA ×sinB
hence , cos15 ° = cos (45 ° - 30° )
= cos45° ×cos30° + sin45° × sin30°
= 1/√2 × √3/2 + 1/√2× 1/2
= √3 + 1
---------------
2 √2
hence , here sin75° = cos15° = √3 + 1 /2√2
_________________________
Hope it helps you !!
@Rajukumar111
Similar questions