If sin (A+B) = sinA cosB + cosA sinB & cos(A-B) = cosA cosB + sinA sinB, find the values of (1)
sin75° (2)cos15°.
Answers
Answered by
3
Hi there.
1.] sin(A + B) = sin A.cos B + cos A.sin B.
→ sin 75° = sin (45 + 30)
= Sin 45 Cos 30 + Cos 45 Sin 30.
= (1 / √2) ( √3 / 2) + (1 / √2) ( 1 / 2)
= [√3 + 1] / 2√2
2.] cos(A - B) = cos A.cos B + sin A.sin B.
→ cos 15° = cos (60 - 45)
= 1 + √3 / 2√2
Hope it helps! :)
1.] sin(A + B) = sin A.cos B + cos A.sin B.
→ sin 75° = sin (45 + 30)
= Sin 45 Cos 30 + Cos 45 Sin 30.
= (1 / √2) ( √3 / 2) + (1 / √2) ( 1 / 2)
= [√3 + 1] / 2√2
2.] cos(A - B) = cos A.cos B + sin A.sin B.
→ cos 15° = cos (60 - 45)
= 1 + √3 / 2√2
Hope it helps! :)
Similar questions