if sin(a+b)=sina.cosb+cosa.sinb and cos(a b)= cosA.cosB+sinA.sinB find the value of sin 75 and cos 15
Answers
Hello users.....
we have to find the value of
sin 15° and cos 15° = ?
solution:-
we know that
sin(A-B)=sinAcosB-cosAsinB
and
cos(A-B)=cosAcosB+sinAsinB
now,
(1) sin 15° = sin ( 45° - 30°)
= sin 45°cos 30° - cos 45° sin 30°
=1/√2 × √3/2 - 1/√2 × 1/2
= √3 / 2√2 - 1 / 2√2
= ( √3 - 1) / 2√2 answer
(2) cos 15° = cos(45° - 30°)
= cos 45° cos 30° + sin 45° sin 30°
= 1 / 2√2 × √3 / 2 + 1 / √2 × 1 / 2
= √3 / 2√2 + 1 / 2√2
= ( √3 + 1) / 2√2 answer
✰✰ hope it helps ✰✰
#Dramaqueen⭐
heya...
✔here is ua answer:
__________________________________________❤
15° can be written as 45° - 30°, Let A = 45°, and B = 30°
we know that Sin(A-B) = SinACosB - CosASinB,
and Cos A = root 1-SinA^2
Substitute A and B here,
Sin(45-30) = (1/√2)*(√3/2) - (1/√2)*(1/2),
Sin (15) = (√3 - 1)/(2√2),
Similarly Cos 15 = (1+√3)/(2√2)
hope it helps..!!❤