Math, asked by subhasree1438, 6 months ago

If sin(A+B) = sinA cosB + cosA sinB, find the value of sin75 and sin105.

ONLY IF U KNOW THE SOLUTION THEN REPLAY OTHERWISE I WILL REPORT UR ANSWER,DON'T DO ANYTHING TO SCORE MORE.​

Answers

Answered by GURSIMRANJEETSINGH
2

Answer:

just substitute 45+30 in place of A+B and then find the value using above identity

similary for 105 you can write it as 60+ 45 in place of A+B

Answered by Anonymous
103

Given:,

  • sin(A + B) = sin A cos B + cos A sin B

Find:

  • sin 75°
  • sin 105°

Solution:

we, can write

 \sf \dashrightarrow  \sin {75}^{ \circ}  =  \sin{(45 + 30)}^{ \circ}

Then,

 \sf \dashrightarrow \sin{(45 + 30)}^{ \circ}  = \sin {45}^{ \circ} \cos {30}^{ \circ} + \cos {45}^{ \circ} \sin {30}^{ \circ} \\  \\  \\  \sf where, \sin {45}^{ \circ} =  \dfrac{1}{ \sqrt{2} }  \\  \cos {30}^{ \circ} =  \dfrac{ \sqrt{3} }{2}  \\  \cos {45}^{ \circ} =  \dfrac{1}{ \sqrt{2} }  \\ \sin {30}^{ \circ} =  \dfrac{1}{2}  \\  \qquad \qquad \sf  \dag using \: these \: values \dag \\  \\  \sf \dashrightarrow \sin{(45 + 30)}^{ \circ}  =  \bigg( \dfrac{1}{ \sqrt{2} }  \bigg) \bigg( \dfrac{ \sqrt{3} }{ 2 }  \bigg) + \bigg( \dfrac{1}{ \sqrt{2} }  \bigg) \bigg( \dfrac{1}{2}  \bigg) \\  \\  \\ \sf \dashrightarrow \sin{(45 + 30)}^{ \circ}  =  \bigg( \dfrac{ \sqrt{3} }{ 2\sqrt{2} }  \bigg)+ \bigg( \dfrac{1}{ 2\sqrt{2} }  \bigg) \\  \\  \\ \sf \dashrightarrow \sin{(75)}^{ \circ}  =  \dfrac{ \sqrt{3} }{ 2\sqrt{2} } + \dfrac{1}{ 2\sqrt{2} } \\  \\  \\ \sf \dashrightarrow \sin{(75)}^{ \circ}  =  \dfrac{ \sqrt{3}  + 1}{ 2\sqrt{2} }\\  \\  \\ \sf \therefore \sin{75}^{ \circ}  =  \dfrac{ \sqrt{3}  + 1}{ 2\sqrt{2} }

we, know that

sin 105° and sin 75° are supplementary angles. Hence, Both have same values.

 \sf \implies \sin {105}^{\circ} =  \sin {75}^{\circ}

where,

sin 75° = \dfrac{ \sqrt{3}  + 1}{ 2\sqrt{2} }

So,

sin 105° = \dfrac{ \sqrt{3}  + 1}{ 2\sqrt{2} }

_________________________

Hence,

  • sin 75° = \dfrac{ \sqrt{3}  + 1}{ 2\sqrt{2} }

  • sin 105° = \dfrac{ \sqrt{3}  + 1}{ 2\sqrt{2} }

_________________________

Similar questions