Math, asked by addyboy16, 1 year ago

if sin(A+B) = sinA.cosB+cosA.sinB then find sin75

Answers

Answered by neelimamaity05
27
sin 75 = sin(30+45)=sin30.cos45+cos30.sin45
                               =1/(2*2^1/2)}+3^1/2*1/2*2^1/2}
                               =(1+3^1/2)/2
Answered by mysticd
41

Answer:

sin75°

=\frac{(\sqrt{3}+1)}{2\sqrt{2}}

Explanation:

Value of sin75

= sin(45+30)

\boxed {sin(A+B)\\=sinAcosB+cosAsinB}

Here,

A = 45° , B = 30°

= sin45°cos30°+cos45°sin30°

=\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times \frac{1}{2}

= \frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}

=\frac{(\sqrt{3}+1)}{2\sqrt{2}}

Therefore,

sin75°

=\frac{(\sqrt{3}+1)}{2\sqrt{2}}

•••••

Similar questions