if sin(A-B)=sinAcosB-cosAsinB and cos(A-B)=cosAcosB+sinAsinB, find value of sin 15 degree and cos 15 degree.
Answers
Answered by
55
hello users.....
we have to find the value of
sin 15° and cos 15° = ?
solution:-
we know that
sin(A-B)=sinAcosB-cosAsinB
and
cos(A-B)=cosAcosB+sinAsinB
now,
(1) sin 15° = sin ( 45° - 30°)
= sin 45°cos 30° - cos 45° sin 30°
=1/√2 × √3/2 - 1/√2 × 1/2
= √3 / 2√2 - 1 / 2√2
= ( √3 - 1) / 2√2 answer
(2) cos 15° = cos(45° - 30°)
= cos 45° cos 30° + sin 45° sin 30°
= 1 / 2√2 × √3 / 2 + 1 / √2 × 1 / 2
= √3 / 2√2 + 1 / 2√2
= ( √3 + 1) / 2√2 answer
✰✰ hope it helps ✰✰
we have to find the value of
sin 15° and cos 15° = ?
solution:-
we know that
sin(A-B)=sinAcosB-cosAsinB
and
cos(A-B)=cosAcosB+sinAsinB
now,
(1) sin 15° = sin ( 45° - 30°)
= sin 45°cos 30° - cos 45° sin 30°
=1/√2 × √3/2 - 1/√2 × 1/2
= √3 / 2√2 - 1 / 2√2
= ( √3 - 1) / 2√2 answer
(2) cos 15° = cos(45° - 30°)
= cos 45° cos 30° + sin 45° sin 30°
= 1 / 2√2 × √3 / 2 + 1 / √2 × 1 / 2
= √3 / 2√2 + 1 / 2√2
= ( √3 + 1) / 2√2 answer
✰✰ hope it helps ✰✰
THEGREATGEEK:
did you randomly assumed values of A and B?
Answered by
16
sin(A-B)=sinAcosB-cosAsinB
sin15° can be written as
sin(45°-30°)
now,
=sin45°cos30°-cos45°sin30°
=1/√2×√3/2-1/√2×1/2
=√3/2√2-1/2√2
By taking LCM
=√3-1/2√2
Now,
cos15° can be written as
cos(45°-30°)
=cos45°cos30°+sin45°sin30°
=1/√2×√3/2+1/√2×1/2
=√3/2+1/2√2
by taking LCM we get
=√3+1/2√2
Similar questions
Chemistry,
8 months ago
India Languages,
8 months ago
Math,
1 year ago
English,
1 year ago
Biology,
1 year ago