Math, asked by nimarjotsingh07, 4 days ago

if sin (A+B) =
 \frac{ \sqrt{3} }{2}

Attachments:

Answers

Answered by regardsvishal
0

Answer:

Given information:

  • sin(A+B)=\frac{\sqrt{3}}{2}
  • cos(A-B)=\frac{\sqrt{3}}{2}

Step-by-step explanation:

Since,

sin(A+B)=\frac{\sqrt{3}}{2}\\(A+B)=sin^{-1}(\frac{\sqrt{3}}{2}\\A+B=60^\circ...(1)

And,

cos(A-B)=\frac{\sqrt{3}}{2}\\(A-B)=cos^{-1}(\frac{\sqrt{3}}{2})\\A-B=30^\circ...(2)

Adding equation (1) and (2)

(A+B)+(A-B)=60^\circ-30^\circ\\2A=90^\circ\\A=\frac{90^\circ}{2}\\=45^\circ

Therefore, the value of A is 45°. Hence, option B is the correct choice.

Similar questions