Math, asked by Tell02, 3 months ago

If sin θ = a/b, Then find all Trigonometric Ratios​

Answers

Answered by mohitwagh
4

Answer:

hope it helps you my friend

Attachments:
Answered by MiraculousBabe
67

Answer:

We know that :

\sf{\sin\theta = Opposite\:Side/Hypotenuse}

\longrightarrow\sf{a/b = Opposite\:Side/Hypotenuse}

\bigstar From this Information ;

\longrightarrow Opposite Side = a \& Hypotenuse = b

We can apply Pythagoras Theorem (Pythagoras Theorem states that Square of Hypotenuse is equal to Square of Other two Sides) in The triangle and find the measure of Adjacent Side

\boxed{\rm{(Hypotenuse)^2 = (Opposite\: Side)^2 + (Adjacent\: Side)^2}}

\longrightarrow\rm{b^2 = a^2 + (Adjacent\: Side)^2\quad...\:\sf{Since\:Opposite\:Side = a\:\&\: Hypotenuse = b }}

\longrightarrow\rm{(Adjacent\: Side)^2 = b^2 - a^2\quad...\:\sf{Subtracting\:a^2\:from\:both\:Sides\:of\:Equation}}

\longrightarrow\rm{Adjacent\: Side = \sqrt{b^2 - a^2}\quad...\:\sf{Taking\:Square\:Root\:on\:both\:Sides\:of\:Equation}}

\bigstar Now, From the Calculations ;

\longrightarrow Opposite Side = a, Adjacent Side = \sqrt{\sf{b^2-a^2}} \& Hypotenuse = b

\boxed{\begin{aligned}&\bullet\:\sin\theta = \rm{Opposite\:Side/Hypotenuse = a/b}\\&\bullet\:\cos\theta = \rm{Adjacent\:Side/Hypotenuse = \sqrt{b^2-a^2}/b}\\&\bullet\:\tan\theta = \rm{Opposite\:Side/Adjacent\:Side = a/\sqrt{b^2-a^2}}\\&\bullet\:\csc\theta = \rm{Hypotenuse/Opposite\:Side  = b/a}\\&\bullet\:\sec\theta = \rm{Hypotenuse/Adjacent\:Side = b/\sqrt{b^2-a^2}}\\&\bullet\:\cot\theta = \rm{Adjacent\:Side/Opposite\:Side = \sqrt{b^2-a^2}/a}\\\end{aligned}}

\large{----------\textbf{ Alternate Method }----------}

  • We know that :

\sf{\sin^2\theta+ \cos^2\theta=1}

\longrightarrow\rm{(a/b)^2 + \cos^2\theta = 1\longrightarrow\rm{a^2/b^2 + \cos^2\theta = 1}\quad...\:\sf{Since\:\sin\theta\:is\:equal\:to\:a/b}}

\longrightarrow\rm{\cos^2\theta = 1 - a^2/b^2\quad...\:\sf{Subtracting\:a^2/b^2\:from\:both\:Sides\:of\:the\:Equation}}

\longrightarrow\rm{\cos^2\theta = b^2/b^2 - a^2/b^2 = (b^2-a^2)/b^2\quad...\:\sf{Taking\:LCM\:of\:1\:and\:b^2}}

\longrightarrow\rm{\cos\theta = \sqrt{(b^2-a^2)/b^2} = \sqrt{b^2-a^2}/b\quad...\:\sf{Taking\:Square\:Root\:on\:both\:sides}}

  • We know that :

\sf{\tan\theta = \sin\theta/\cos\theta}

\longrightarrow\rm{\tan\theta=a/b\div \sqrt{b^2-a^2}/b\quad...\:\sf{Since\:\sin\theta = a/b\:and\:\cos\theta = \sqrt{b^2-a^2}/b}}

\longrightarrow\rm{\tan\theta=a/b\times b/\sqrt{b^2-a^2} = ab/b\sqrt{b^2-a^2} = a/\sqrt{b^2-a^2}}

  • We know that :

\sf{\csc\theta = 1/\sin\theta}

\longrightarrow\rm{\csc\theta = 1\div a/b =  1\times b/a = b/a\quad...\:\sf{Since\:\sin\theta\:is\:equal\:to\:a/b}}

We know that : \sf{\sec\theta = 1/\cos\theta}

\longrightarrow\rm{\sec\theta = 1\div \sqrt{b^2-a^2}/b} =  b/\sqrt{b^2-a^2}\quad...\:\sf{Since\:\cos\theta\:is\:equal\:to\:\sqrt{b^2-a^2}/b}

  • We know that :

\sf{\cot\theta = 1/\tan\theta}

\longrightarrow\rm{\cot\theta = 1\div a/\sqrt{b^2-a^2} =  \sqrt{b^2-a^2}/a\quad...\:\sf{Since\:\tan\theta\:is\:equal\:to\:a/\sqrt{b^2-a^2}}}

\bigstar From the Calculations ;.

\boxed{\begin{aligned}&\bullet\:\sin\theta = \rm{Opposite\:Side/Hypotenuse = a/b}\\&\bullet\:\cos\theta = \rm{Adjacent\:Side/Hypotenuse = \sqrt{b^2-a^2}/b}\\&\bullet\:\tan\theta = \rm{Opposite\:Side/Adjacent\:Side = a/\sqrt{b^2-a^2}}\\&\bullet\:\csc\theta = \rm{Hypotenuse/Opposite\:Side  = b/a}\\&\bullet\:\sec\theta = \rm{Hypotenuse/Adjacent\:Side = b/\sqrt{b^2-a^2}}\\&\bullet\:\cot\theta = \rm{Adjacent\:Side/Opposite\:Side = \sqrt{b^2-a^2}/a}\\\end{aligned}}

Similar questions