Math, asked by kotayaswanth6762, 1 year ago

If sin a - cos a=0 then the value of sin ^4 a+ cos^4 a is

Answers

Answered by digi18
15
sin a \: - cosa = 0

on \: squaring \: both \: side \: we \: get

(sina - cos) {}^{2} = (0) {}^{2}

sin {}^{2} a + cos {}^{2} a - 2sina \: cosa = 0

sin {}^{2} a + cos {}^{2} a = 2sina \: cosa

again \: squaring \: both \: side

(sin {}^{2} a + cos {}^{2} a) {}^{2} = (2sina \: cosa) {}^{2}

sin {}^{4} a + cos {}^{4} a + 2sin {}^{2} a \: cos {}^{2} a \: = 4sin {}^{2} a \: cos {}^{2} a

sin {}^{4} a \: + cos {}^{4} a = 4sin {}^{2} a \: cos {}^{2} a - 2sin {}^{2} a \: cos {}^{2} a

sin {}^{4} a \: + cos {}^{4} a = 2sin {}^{2} a \: cos {}^{2} a

thanks
Answered by Vedantshinde4may
33

sinA=cosA

or sin45=cos45

A=45


SIN^4A+COS^4A= SIN^4(45)+COS^4(45)= {(1/2)^(1/2)}4 + ​{(1/2)^(1/2)}4


=1/2

Similar questions