if sin a + cos a =1 prove that sin a - cos a = +-1
Answers
Given---> Sin A + CosA = 1
To prove ---> SinA - CosA = ± 1
Proof --->
SinA + CosA = 1
Squaring both sides
( SinA + CosA )² = ( 1 )²
We have an identity
( a + b )² = a² + b² + 2ab
Applying it here we get
=> Sin²A + Cos²A + 2 SinA CosA = 1
we have an identity
Sin²θ + Cos²θ = 1
Applying it here
=> 1 + 2 SinA CosA = 1
=> 2 SinA CosA = 1 - 1
=> 2 SinA CosA = 0
Now
We have an identity
( a - b )² = a² + b² - 2 a b
(SinA - CosA)²= Sin²A+Cos²A-2SinACosA
( Using Sin²θ + Cos²θ = 1 and
2 SinA CosA = 0 here we get )
= 1 - 0
( SinA - CosA )² = 1
Taking square root of both sides
( SinA - CosA ) = ± 1
Answer:
Step-by-step explanation:
Using the formula
( a + b ) ²+ ( a− b )²= 2 ( a ² + b ² )
( cos θ + sin θ ) ² + ( cos θ − sin θ ) ²= 2 ( sin ² θ + cos ² θ )
⇒ 1 ² + ( cos θ -sin θ ) ² = 2 × 1
⇒ ( cos θ − sin θ ) ² = 2 − 1 =1
⇒ cos θ − sin θ
= ± 1