If sin A+ cos A= 1, then the value of 3 sin A cos A is:
Answers
Given Trigonometric equation is
On squaring both sides, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
FORMULA USED
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1
Question:-
If sinA + cosA = 1, then the value of 3sinA cosA is:
Given:-
Trigonometric Equation:
⇒ sinA + cosA = 1.
To Find:-
- The value of 3sinA cosA.
Solution:-
sinA + cosA = 1
Squaring on Both sides:
(sinA + cosA)² = (1)²
sin²A + cos²A + 2sinA cosA = 1
1 + 2sinA cosA = 1
2sinA cosA = 1 – 1
2sinA cosA = 0
We have to Find 3sinA cosA:
= 3 × 0 (∵ From Equation 1 )
= 0.
Answer:-
Hope you have satisfied. ⚘