if sin a + cos a =7/5 and sina cosa =12/25 find the value of sin a and cos a
Answers
Answer:
sinA = 3/5 or 4/5
cosA = 4/5 or 3/5
Step-by-step explanation:
Let sinA be a and cosA.
Given,
sinA + cosA = 7 / 5
⇒ a + b = 7 / 5
sinA.cosA = 12 / 25
⇒ ab = ( 12 / 25 )
Square on both sides of a + b:
⇒ ( a + b )^2 = ( 7 / 5 )^2
⇒ a^2 + b^2 + 2ab = ( 7 / 5 )^2
⇒ a^2 + b^2 + 2(12/25) = (7/5)^2 { from above,ab=12/25}
⇒ a^2 + b^2 = (49/25) - 2(12/25)
⇒ a^2 + b^2 = (49-24)/25
⇒ a^2 + b^2 = (25/25)
Adding - 2ab both sides :
⇒ a^2 + b^2 - 2ab = (25/35) - 2(12/25)
⇒ ( a - b )^2 = (25/25) - (24/25)
⇒ a - b = 1 / 5 of - 1 / 5
now, a + b = 7 / 5
a - b = 1 / 5
2a = 8 / 5
a = 4 / 5
Thus,
a - 1 / 5 = b ⇒ 4/5 - 1/5 = b ⇒ 3/5 = b
Or if a - b = - 1 / 5
a + b = 7 / 5
2a = 6/5
a = 3/5
So, b = 4/5
Hence,
a = sinA = 3/5 or 4/5
b = cosA = 4/5 or 3/5
Answer:
sin a =4/5
cos a =3/5
Step-by-step explanation:
(sin a - cos a)² = sin²a -2sin a.cos a+cos²a
=1 - (2×12/25)
= (25-24/25)
=1/25
sin a - cos a =√(1/25)
±1/5
Now
sin a + cos a + sin a - cos a = (7/5)+(1/5)
2sin a = 8/5
sin a = 8/10 = 4/5
cos a =(7/5)-(8/10)
=14-8/10
=6/10= 3/5
Plz mark as brainliest