If sin A+cosA=m
seca+cosec An
Prove that n(m2_1)
= 2m
Answers
Answered by
31
Answer:
LHS : n(m2 - 1)
= secA +cosecA [ (sinA +cosA)2 - 1]
= secA + cosecA [ sin2A + cos2A + 2 sinA .cosA -1]
= secA +cosecA [ 1 +2 sinA . cosA -1] [sin2A +cos2A =1]
= secA +cosecA [ 2sinA cosA]
= 2 secA sinA cosA + 2 cosecA sinA cosA
= 2sinA + 2 cosA [secA*cosA=1 and cosecA*sinA=1]
= 2(sinA +cosA)
= 2 m [sinA +cosA =m]
= RHS
Answered by
0
Answer:
n[m^2-1]=2m
Step-by-step explanation:
sec A+cosecA [(sinA+cosA)^2 - 1]
= 1/cosA +1/sinA[sin^2A +cos^2A+2sinAcosA-1]
=sinA+cosA/sinAcosA [1+2sinAcosA-1]
sinA+cosA/sinAcosA[2 sinAcosA]
= 2[sinAcosA]
hence proved
hope it helps please
please mark this as BRAINLIAST
Similar questions