Math, asked by Anonymous, 10 months ago

If sin A+cosA=root 3 then prove that tanA+ CotA=1​

Answers

Answered by mercyy
3

Step-by-step explanation:

here u go

hope it helps......

Attachments:
Answered by ranjanalok961
2

Solution :-

sin A + cosA = 3

A/Q

=> (sinA +cosA)² = sin²A + cos²A + 2sinA .cosA

=> (3)²= 1 + 2sinA .cosA

=> 3 -1 = 2sinA .cosA

=> sinA .cosA = 1

then ,

=tanA + cot A

= sinA / cosA + cosA/ sinA

=(sin²A + cos²A )/ sinA . cosA

= 1 /1 = 1

hence , tan A + cot = 1 .

Similar questions