If sin A+cosA=root 3 then prove that tanA+ CotA=1
Answers
Answered by
3
Step-by-step explanation:
here u go
hope it helps......
Attachments:
Answered by
2
Solution :-
sin A + cosA = √3
A/Q
=> (sinA +cosA)² = sin²A + cos²A + 2sinA .cosA
=> (√3)²= 1 + 2sinA .cosA
=> 3 -1 = 2sinA .cosA
=> sinA .cosA = 1
then ,
=tanA + cot A
= sinA / cosA + cosA/ sinA
=(sin²A + cos²A )/ sinA . cosA
= 1 /1 = 1
hence , tan A + cot = 1 .
Similar questions