If sin A=CsB,then prove that A+B=90°
50 points...have a nice day Friends
Answers
Answered by
5
Hello Friend....
_________________________
_________________________
The answer of u r question is......
Ans:
Given,
SinA=cosB
we know cosB=Sin(90°-B)......(1)
SinA=sin(90°B)
If A,B are acute angles then,A=90°-B
so,
A+B=90°
______________________
______________________
Thank you.....⭐️⭐️⭐️⭐️
_________________________
_________________________
The answer of u r question is......
Ans:
Given,
SinA=cosB
we know cosB=Sin(90°-B)......(1)
SinA=sin(90°B)
If A,B are acute angles then,A=90°-B
so,
A+B=90°
______________________
______________________
Thank you.....⭐️⭐️⭐️⭐️
Answered by
3
Given :- SinA = CosB
Required to prove :- A + B = 90°
→ SinA = CosB
⭐ lets have Sin on both sides
→ SinA = Cos (90-B )
→ SinA = SinB
⭐ Sin on LHS and RHS get cancelled
→ A = B
So let's take a constant
→ A = B = K
A + B = 90°
→ K + K = 90°
→ 2K = 90°
→ K = 90/2
→ k = 45°
A = B = 45°
________________
→ A + B = 90°
→ 45° + 45° = 90°
→ 90° = 90°
_________________
Similar questions