Math, asked by jsathwik1122, 9 months ago

If sin a equal to 9 by 41 find the value of Cos A and tan A

Answers

Answered by rahulvijiseb
1

Answer:

cos A=40/41

tan A=9/40

Step-by-step explanation:

sin A= 9/41

sin^2 A=81/1681

1-sin^2 A= cos^2 A

⇒1-81/1681= cos^2 A

⇒1600/ 1681 = cos^2 A

⇒ cos A=  √1600/ √1681

             = 40/41

tan A = sin A/cos A

⇒ tan A = (9/41)/(40/41)

             =9/40

Hope this helps!!

Answered by BrainlyTornado
2

\sf{\boxed{\underline{ANSWER}}}

\sf{CosA=\frac{40}{81}}

\sf{TanA=\frac{9}{40}}

\sf{\boxed{\underline{GIVEN:}}}

\sf{SinA=\frac{9}{41}}

\sf{\boxed{\underline{TO\:FIND:}}}\sf{CosA\:AND\:Tan A=??}

\sf{\boxed{\underline{FORMULAS}}}

\sf{CosA=\sqrt{1-sin^2A}}

\sf{TanA=\frac{SinA}{CosA}}

\sf{\boxed{\underline{EXPLANATION:}}}

\sf{CosA=\sqrt{1-(\frac{9}{41})^2}}

\sf{CosA=\sqrt{1-\frac{81}{1681}}}

\sf{CosA=\sqrt{\frac{1681-81}{1681}}}

\sf{CosA=\sqrt{\frac{1600}{1681}}}

\sf{CosA=\frac{40}{81}}

\sf{TanA=\frac{9/41}{40/41}}

\sf{TanA=\frac{9}{40}}

Similar questions