if sin a is 12/13 prove that sin2a=2 sin a cos a
plz its urgent
Answers
Answered by
2
Answer:
Step-by-step explanation:
sin(2a) = sin(a+a) = sinacosa+cosasina = 2sinacosa
Answered by
7
EXPLANATION.
⇒ sin a = 12/13.
sin ∅ = p/h = perpendicular/hypotenuse.
⇒ sin a = 12/13 = p/h.
by using Pythagorean theorem we get,
⇒ p² + b² = h²
⇒ (12)² + (b)² = (13)².
⇒ 144 + (b)² = 169.
⇒ b² = 169 - 144.
⇒ b² = 25.
⇒ b = √25.
⇒ b = 5.
sin ∅ = perpendicular/hypotenuse = 12/13.
cos ∅ = base/hypotenuse = 5/13.
tan ∅ = perpendicular/base = 12/5.
Cosec ∅ = hypotenuse/perpendicular = 13/12.
sec ∅ = hypotenuse/base = 13/5.
cot ∅ = base/perpendicular = 5/12.
sin 2a = 2 sin(a)cos(a).
As we know that,
sin(A + B ) = sin A. cos B + Cos A. sin B.
put B = A we get,
sin 2A = sin A. cos A + sin A. cos A = 2 sin A. cos A.
Similarly,
sin A = 2 sin [A/2]. cos [A/2]
sin A/2 = 2 sin [A/4]. cos [A/4].
Similar questions