If sin A+ Sin^2 A=1, then find the value of the expression (cos^2 A+Cos^4A)
Answers
Answered by
1
Answer:
Our starting goal is to turn all terms into cosine. Use the identity
sin
2
θ
+
cos
2
θ
=
1
.
sin
a
+
1
−
cos
2
a
=
1
sin
a
−
cos
2
a
=
0
sin
a
=
cos
2
a
Square both sides to get rid of the sine.
(
sin
a
)
2
=
(
cos
2
a
)
2
sin
2
a
=
cos
4
a
Reuse
sin
2
θ
+
cos
2
θ
=
1
:
1
−
cos
2
a
=
cos
4
a
1
=
cos
4
a
+
cos
2
a
Hopefully this helps!
Answered by
3
Answer:
sin A. +sin2A= 1
sinA. =1 -sin2A
sinA =cos2A
similarly sin2A =cos4 A
1 - cos2A =cos4A
cos2A +cos4A =1
Similar questions