If sin A + sin 2A = x , cos A + c cos 2A = y then cos A =
Answers
Answered by
0
Answer:
Substituting values
[(sinA+sin2A)
2
+(cosA+cos2A)
2
][(sinA+sin2A)
2
+(cosA+cos2A)
2
−3]
=[1+1+cosA−cos3A+cos3A+cosA][2+2cosA−3]
=(2+2cosA)(2cosA−1)
=4cosA−2+4cosA−2cosA
=4cos
2
A+2cosA−2
=2(2cos
2
A−1)+2cosA
=2cos2A+2cosA
=2(cosA+cos2A)=2y
Hence proved.
Answered by
0
Solution:
Substituting values
[(sinA+sin2A)
2
+(cosA+cos2A)
2
][(sinA+sin2A)
2
+(cosA+cos2A)
2
−3]
=[1+1+cosA−cos3A+cos3A+cosA][2+2cosA−3]
=(2+2cosA)(2cosA−1)
=4cosA−2+4cosA−2cosA
=4cos
2
A+2cosA−2
=2(2cos
2
A−1)+2cosA
=2cos2A+2cosA
=2(cosA+cos2A)=2y
Hence proved.
Was this answer helpful?
Similar questions
Math,
9 hours ago
Accountancy,
9 hours ago
Science,
9 hours ago
Political Science,
18 hours ago
Math,
18 hours ago
Economy,
8 months ago
Social Sciences,
8 months ago