Math, asked by AkShAyKrIzZ192, 1 year ago

If Sin A+sin^3A=cos^2A,prove that cos^6-4cos^4+8cos^2A=4?................


Explode: Can you tell me please which class question ???
AkShAyKrIzZ192: 10 class.
Explode: ooo
AkShAyKrIzZ192: Answer plzz

Answers

Answered by atharvanihul123
39

The proof is given below..........

Hope this will help you

Welcome

Attachments:
Answered by mysticd
47

Answer:

If \:Sin A+sin^{3}A=cos^{2}A\:then\:\\cos^{6}-4cos^{4}A+8cos^{2}A=4

Step-by-step explanation:

Given,\\sinA+sin^{3}A=cos^{2}A

\implies sinA(1+sin^{2}A)=cos^{2}A

/* On Squaring both sides of the equation,we get

\implies sin^{2}A\left(1+sin^{2}A\right)^{2}=cos^{4}A

\implies (1-cos^{2}A)[1+(1-cos^{2}A)]^{2}=cos^{4}A

\implies (1-cos^{2}A)(2-cos^{2}A)^{2}=cos^{4}A

\implies (1-cos^{2}A)(4-4cos^{2}A+cos^{4}A)=cos^{4}A

\implies 4-4cos^{2}A+cos^{4}A-4cos^{2}A+4cos^{4}A-cos^{6}A=cos^{4}A

\implies -cos^{6}A+4cos^{4}A-8cos^{2}A+4=0

\implies cos^{6}A-4cos^{4}A+8cos^{2}A=4

•••♪

Similar questions