if sin A+ sin B = a and Cos A+ cosB= b then
Answers
Answered by
11
Answer:
Here is your answer
Step-by-step explanation:
(SinA+SinB)(CosA+CosB)
=SinACosA+SinACosB+SinBCosB)
=Sin2A+Sin2B)/2+Sin(A+B)=ab
Sin(A+B)=ab-(Sin2A+Sin2B)/2
Sin(A+B)=ab-Sin(A+B)Cos(A-B)
Sin(A+B)=ab/1+Cos(A-B)...(1)
(a^2=Sin^2A+Sin2^B+2SinASinB
b^2=Cos^2A+Cos^2B+2CosACosB
a^2+b^2=1+1+2/(SinASinB+CosA+CosB)
=2(1+SinASinB+CosACosB)
=2(1+Cos(A-B))=a^2+b^2
Cos(A-B)=a^2+b^2)/2-1
Similar questions
Math,
6 months ago
English,
6 months ago
English,
6 months ago
Social Sciences,
1 year ago
Environmental Sciences,
1 year ago