if sin A /sin B=m ,cos A/cos B =prove that tan A =m/n root 1-n^2/m^2 - 1
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given
m=cosαcosβ & n =cosαsinβ
hence,
(m2+n2)cos2β=((cosαcosβ)2+(cosαsinβ)2)cos2β
=(cos2αcos2β+cos2αsin2β)cos2β
=cos2α(1cos2β+1sin2β)cos2β
=cos2α(sin2β+cos2βcos2βsin2β)cos2β
=cos2α(1sin2β)
=cos2αsin2β
=(cosαsinβ)2
=n2
Continued..
=(n^2-m^2).sin^2 B. , putting n= cosA/cosB. and m=sin A/sinB.
=(cos^2 A/cos^2 B- sin^2 A/sin^2 B).sin^2 B.
={(sin^2 B.cos^2 A-cos^2 B.sin^2 A)/sin^2 B.cos^2 B}.sin^2 B.
={(1-cos^2 B).cos^2 A-cos^2 B.(1-cos^2 A)}/cos^2 B.
={cos^2 A - cos^2 A.cos^2 B-cos^2 B + cos^2 A.cos^2 B}/cos^2 B.
=( cos^2 A - cos^2 B)/cos^2 B.
= cos^2 A/cos^2 B - cos^2 B/cos^2 B.
=(cosA/cosB)^2 - 1 . , putting cosA/cosB= n
= n^2. - 1. Proved
Similar questions
Hindi,
2 months ago
Computer Science,
2 months ago
English,
5 months ago
English,
11 months ago
Science,
11 months ago