Math, asked by utsavsinghal, 5 months ago

If sin A + sin B + sin C = 0, show that
sin 3A + sin 3B + sin 3C + 12 sin A sin B sin C = 0.​

Answers

Answered by mathdude500
2

Given Question :

If sin A + sin B + sin C = 0, show that

sin 3A + sin 3B + sin 3C + 12 sin A sin B sin C = 0.

Identities Used :-

We know,

If a + b + c = 0, then

\sf \:  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc

Also we know,

\sf \:  sin3x = 3 \: sinx - 4 {sin}^{3} x

Step by step explanation :-

☆ Since, sinA + sinB + sinC = 0

\tt\implies \: {sin}^{3} A +  {sin}^{3} B +  {sin}^{3} C = 3sinA \: sinB \: sinC  - -  - (1)

\tt \:  Consider \: sin3A + sin3B + sin3C + 12sinAsinBsinC

\sf \:  = 3sinA - 4 {sin}^{3} A + 3sinB - 4 {sin}^{3} B +  \\ \sf \: 3sinC - 4 {sin}^{3} C + 12sinAsinBsinC

\sf \:  = 3(sinA + sinB + sinC) - 4( {sin}^{3} A +  {sin}^{3} B +  {sin}^{ 3} C) \\ \sf \: \sf \: 12sin \: A \: sin \: B \: sinC \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\tt \:   = 3 \times 0 - 4(3sinAsinBsinC) + 12sinAsinBsinC

\tt \:   = 0 - 12sinAsinBsinC + 12sinAsinBsinC

\tt \:   =  \: 0

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Answered by majhisarita83
6

Answer:

I am fine bro... ...

Hope you are doing well... ☘

Similar questions