if sin A + sin B + sin C = 3,then find the value of sin(A + B + C) = ?
Answers
Answered by
1
Answer:
If sinA+sinB+sinC=3 , then cosA+cosB+cosC=?
sinA+sinB+sinB=1+1+1
or. (sinA-1)+(sinB-1)+(sinC-1)=0………..(1)
Comparing the both sides of eqn. (1)
(sinA-1)=0. => sinA= 1 or A=90°
(sinB-1)=0 => sinB=1 or B=90°
(sinC-1)=0. => sinC=1 or C=90°.
Now cosA+cosB+cosC=?
Putting. A=B=C=90°
=cos90°+cos90°+cos90°
=0+0+0
= 0. Answer
use these same steps to answer ur question
Answered by
1
Answer:
We know that
sin 90 = 1
then let,
A,B,C = 90
sin A + sin B + sin C =3
then sin ( A+B+C) = sin ( 90 + 90 + 90 )
sin (270) = -1
Similar questions