Math, asked by AlokPrabhakar8089, 1 year ago

if sin A + sin square A =1 prove that cos squareA + cos power 4 A=1

Answers

Answered by QGP
87

Given:

\rm\sin A + \sin^2 A = 1

To Prove:

\rm\cos^2A+\cos^4A = 1

 \rule{320}{1}

We will use only one identity:

\rm 1-\sin^2\theta = \cos^2\theta

Proof:

\rm\textsf{Consider }\sin A + \sin^2A=1 \\\\\\ \implies \rm \sin A=1-\sin^2A\\\\\\ \implies \rm\sin A=\cos^2A \\\\\\ \textsf{Squaring both sides} \\\\\\ \implies\rm \sin^2 A=\cos^4 A \\\\\\ \implies \rm 1-\cos^2 = \cos^4A\\\\\\ \implies \rm 1 = \cos^2 A+\cos^4 A \\\\\\ \implies \boxed{\rm \cos^2A+\cos^4A=1} \\\\\\ \mathcal{HENCE\ \ PROVED}

Answered by EliteSoul
73

Answer:

\bold\red{Given\::}

  • \rm sinA + \sin^2 A = 1

\bold\green{To\:prove\::}

  • \rm \cos^2 A + \cos^4 A = 1

Formula used:-

{\boxed{\bold{{cos}^{2} \theta = 1 - {sin}^{2}\theta }}}

\rightarrow\rm sinA + \sin^2 A = 1 \\\\\rightarrow\rm sinA = 1 - \sin^2 A \\\\\rightarrow\rm sinA = \cos^2A

\star\tt By\: squaring \:both\:sides

\rightarrow\rm \sin^2 A = \cos^4 A \\\\\rightarrow\rm 1 - \cos^2 A = \cos^4 A \\\\\rightarrow\rm \cos^2 A + \cos^4 A = 1 \: \: \: [Proved]

\therefore\bold{\underline{{cos}^{2}A + {cos}^{4} A = 1 \: \: \: [Proved]}}

Similar questions