Math, asked by topper123472, 10 months ago


If sin A+sin square A=1, then the value of (cos square A + cos raised to the power 4 A) is

(a) 1
(b)
(c) 2
(d) 3

Answers

Answered by rocky200216
25

(a) 1 .

Hope it's helpful to you.

Please mark as Brainlist answer.

Attachments:
Answered by Anonymous
38

Answer:

Option (a) 1

Step-by-step explanation:

 \sf  \Rightarrow sinA + sin^{2} A = 1

Step 1 : Transposing sin²A to RHS

 \sf  \Rightarrow sinA = 1 - sin^{2} A

Step 3 : Using Trignometric identity cos² A = 1 - sin² A

 \sf  \Rightarrow sinA = cos^{2} A

Step 4 : Squaring on both sides

 \sf  \Rightarrow sin^{2} A =( cos^{2} A)^{2}

Step 5 : Using Laws of exponents ( a^m )^n = a^( mn)

 \sf  \Rightarrow sin^{2} A = cos^{2 \times 2} A

 \sf  \Rightarrow sin^{2} A = cos^{4} A

Step 6 : Using Trignometric identity sin²A = 1 - cos²A

 \sf  \Rightarrow 1 - cos^{2} A = cos^{4} A

Step 7 : Transposing cos²A to RHS

 \sf  \Rightarrow 1  =  cos^{4} A  +  cos^{2} A

 \sf  \Rightarrow cos^{4} A  +  cos^{2} A = 1

Hence the value cos^4 A + cos²A is 1.

Similar questions