if sin A = sin x + sin y / 1+ sin x - sin y ,then prove that cos A = cos x cos y / 1+ sin x sin y
Answers
Answered by
1
Answer:
Given
sinθ=sinx+siny1+sinxsiny
show
cosθ=cosxcosy1+sinxsiny
This is surely not correct because the sine doesn’t determine the sign of the cosine, so there’s probably a missing ±; let’s find out.
We have cos2θ+sin2θ=1 or
cos2θ=1−sin2θ
and we just work it out. There’s a common denominator; it’s r2 where r=1+sinxsiny. We focus on the numerator:
r2cos2θ=r2−r2sin2θ
=(1+sinxsiny)2−(sinx+siny)2
=1+2sinxsiny+sin2xsin2y−sin2x−2sinxsiny−sin2y
=1+sin2xsin2y−sin2x−sin2y
=1+(1−cos2x)(1−cos2y)−(1−cos2x)−(1−cos2y)
=1+1−cos2x−cos2y+cos2xcos2y−1+cos2x−1+cos2y
=cos2xcos2y
cos2θ=cos2xcos2y(1+sinxsiny)2
cosθ=±cosxcosy1+sinxsiny
Step-by-step explanation:
I hope it's help you dear please make me brainliests
Similar questions