if sin A + sin2 A =1,then find the value of cos 2 A + cos4 A
Attachments:
Answers
Answered by
37
Answer:
→ 1 .
Step-by-step explanation :
▶ Given :-
→ sin∅ + sin²∅ = 1 .
▶ To find :-
→ cos²∅ + cos⁴∅ .
▶ Solution :-
We have,
°•° sin∅ + sin²∅ = 1 .
==> sin∅ = 1 - sin²∅ .
==> sin∅ = cos²∅ .
[ Squaring both side ] .
==> sin²∅ = cos⁴∅ .......... ( i ) .
▶ Now,
°•° cos²∅ + cos⁴∅ .
= cos²∅ + sin²∅ . [ Using ( i ) ] .
= 1 .
[ •°• sin²∅ + cos²∅ = 1 . ]
✔✔ Hence, it is founded ✅✅ .
THANKS
iteshpal84:
thanks for help
Answered by
14
Sin A + sin^2 A = 1
Sin A = 1 - Sin ^2 A
Sin A = cos ^2 A
Sin^2 A = ( cos ^2 A ) ^2 = Cos ^4 A
Value of cos^2 A + cos ^4 A = sin A + sin^2 A
Given, sin A + sin^2 A = 1
cos^2 A + cos ^4 A = 1
Sin A = 1 - Sin ^2 A
Sin A = cos ^2 A
Sin^2 A = ( cos ^2 A ) ^2 = Cos ^4 A
Value of cos^2 A + cos ^4 A = sin A + sin^2 A
Given, sin A + sin^2 A = 1
cos^2 A + cos ^4 A = 1
Similar questions
Social Sciences,
7 months ago
Computer Science,
7 months ago
Math,
1 year ago
Chemistry,
1 year ago
Chemistry,
1 year ago