Math, asked by TanishkaDhaker, 7 months ago

if sin A+sin²A=1, find cos²A+cos⁴A​

Answers

Answered by Anonymous
37

{ \underline{ \red{ \bold{Given}}}}

{ \sf{➢sin \: A \:  \:  +  {sin}^{2}A = 1 }}

{ \underline{ \green{ \bold{Find}}}}

{ \sf{➢ {cos}^{2}A+  {cos}^{4}A}}

{ \underline{ \blue{ \bold{Solution}}}}

{ \sf{⟶sin \: A+  {sin}^{2} A = 1}}

{ \sf{⟶ {sin}^{2} \: A = 1 - sin \: A......(1) }}

{ \sf{⟶ {cos}^{2} A +  {cos}^{4} \: A  }}

From trigonometry identity...,

{ \boxed{ {sin}^{2} a +  {cos}^{2}a = 1 }}

{ \boxed{  \therefore{ {cos}^{2} \: a = 1 -  {sin}^{2}  a}}}

{ \sf{⟶ {cos}^{2} a +  {cos}^{4} a = 1 -  {sin}^{2} a +  { {(cos}^{2} a)}^{2} }}

{ \sf{⟶1 -  {sin}^{2} a +  { {(1 -sin}^{2} a)}^{2} }}

{ \sf{⟶1 -  {sin}^{2} a +  {(1 - (1 - sin \: a))}^{2} }}

{ \sf{⟶1 -  {sin}^{2} a +  {sin}^{2} a}}

{ \sf{⟶ {cos}^{2} a +  {sin}^{2} a = 1}}

Therefore,Cos²A+cosA=1

Trigonometry identities:-

{ \boxed{ {sin}^{2} a +  {cos}^{2} a = 1}}

{ \boxed{ {tan}^{2} a = 1 -  {sec}^{2} a}}

{ \boxed{ {cot}^{2} a = 1 -  {cosec}^{2} a}}

Answered by Anishaghosh14
0

Answer:

1

Step-by-step explanation:

SinA + Sin²A=1

or, SinA = 1-Sin²A

or, SinA = Cos²A

Cos²A+Cos⁴A

= Cos²A + (Cos²A) ²

= Sin A + Sin²A

= 1

I think it helps you.

Please follow me.

Similar questions