If sin A + tan A = p ; then prove that cosec A = (In attachment)
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
secA+tanA=p .....(i)
We know sec2A–tan2A=1
=>(secA–tanA)(secA+tanA)=1
=>(secA–tanA)(p)=1
=>secA–tanA=1p .....(ii)
Adding (i) and (ii)
secA+tanA+secA–tanA=p+1p
=>2secA=p2+1p
=>secA=p2+12p
=>cosA=2pp2+1
=>1–sin2A−−−−−−−√=2pp2+1
=>sin2A=1−(2pp2+1)2
=>sin2A=1−(4p2(p2+1)2)
=>sin2A=((p2+1)2−4p2(p2+1)2)
=>sin2A=((p2−1)2(p2+1)2)
=>sin2A=(p2−1p2+1)2
=>sinA=p2−1p2+1
=>cosecA=p2+1p2−1
ajaykumarak123p8zfuq:
kya h yee
Similar questions