if sin(a) = x cos(b) and cos(a)= y sin(b)
then (x²-1) cot²b + (y²-1)cot²a is
equal to
Answers
Answered by
0
Step-by-step explanation:
x=sina/cosb
y=sinb/cosa
(x2-1)cot2b + (y2-1)cot2a
(sin2a/cos2b-1)cot2b + (sin2b/cos2a-1)cot2a
(sin2a-cos2b/cos2b)cos2b/sin2b + (sin2b-cos2a/cos2a) cos2a/sin2a
sin2a-cos2b/sin2b + sin2b-cos2a/sin2a
(2sin2a.sin2b + cos2a.sin2b +cos2b.sin2a)/sin2a.sin2b
Answered by
0
Answer:x=sina/cosb
y=sinb/cosa
(x2-1)cot2b + (y2-1)cot2a
(sin2a/cos2b-1)cot2b + (sin2b/cos2a-1)cot2a
(sin2a-cos2b/cos2b)cos2b/sin2b + (sin2b-cos2a/cos2a) cos2a/sin2a
sin2a-cos2b/sin2b + sin2b-cos2a/sin2a
(2sin2a.sin2b + cos2a.sin2b +cos2b.sin2a)/sin2a.sin2b
Step-by-step explanation:
Similar questions