If sin θ = a²-b²/(b²-a²), find all the ratios.
Anonymous:
dunno
Answers
Answered by
3
sin∅ = (a² - b²)/(b² - a²)
sin∅ = -(b² - a²)/(b² - a²) = -1
sin∅ = sin(-π/2)
∅ = nπ + (-1)ⁿ(-π/2)
so, smallest value of ∅ in [-π, π] is -π/2
now,
cos∅ = cos(-π/2) = 0
sec∅ = 1/0 = undefined
cosec∅ = 1/sin∅ = 1/-1 = -1
tan∅ = tan(-π/2) = undefined
cot∅ = 0
sin∅ = -(b² - a²)/(b² - a²) = -1
sin∅ = sin(-π/2)
∅ = nπ + (-1)ⁿ(-π/2)
so, smallest value of ∅ in [-π, π] is -π/2
now,
cos∅ = cos(-π/2) = 0
sec∅ = 1/0 = undefined
cosec∅ = 1/sin∅ = 1/-1 = -1
tan∅ = tan(-π/2) = undefined
cot∅ = 0
Similar questions