if sin alpha = 15/17 ,cos bita = 12/13 , find the values of sin (alpha + bita) , cos (alpha - bita) and tan (alpha +bita) , where alpha , bita are +ve acute angles
Answers
Answer:
sin(α+β) = 220 / 221
cos(α-β) = 21 /221
tan(α+β) = 220 / 21
Step-by-step explanation:
We are given that
sin(α) = 15/17
cos(β) = 12/13
we know that
sin²(Ф) + cos²(Ф) = 1
When Ф = α
⇒ sin²(α) + cos²(α) = 1
Putting sin(α) = 15/17 we get
(15/17)² + cos²(α) = 1
⇒ cos²(α) = 1 - (15/17)² = 1 - 225 / 289 = 64 /289
⇒ cos²(α) = 64/289
Taking under roots on both sides we get
cos(α) = 8/17
Similarly when Ф = β then
sin²(β) + cos²(β) = 1
By putting cos(β) = 12/13 we get
sin ²(β) = 1 - (12/13)² = 1 - 144 / 169 = 25/169
Taking under root on both sides we get
sin (β) = 5/13
NOW
We know that
sin(α+β) = sin(α)cos(β) + cos(α)sin(β)
Putting value we get
sin(α+β) = (15/17)(12/13) + (8/17)(5/13) = (180 + 40) / 221 = 220 / 221
So sin(α+β) = 220 / 221
NOW
We know that
cos(α-β) = cos(α)cos(β) + sin(α)sin(β)
Putting values we get
cos(α-β) = (8/17)(12/13) + (15/17)(5/13) = 171 / 221
So cos(α-β) = 21 /221
NOW
we know that
tan(α+β) = sin(α+β) / cos(α+β)
And
cos(α+β) = cos(α)cos(β) - sin(α)sin(β)
Putting values we get
cos(α+β) = (8/17)(12/13) - (15/17)(5/13) = 21 / 221
So
tan(α+β) = sin(α+β) / cos(α+β) = (220 / 221) / (21 / 221) = 220 / 21
Thus
tan(α+β) = 220 / 21