Math, asked by NightingaleMadhu, 1 year ago

if sin alpha =3/5 and 90°<alpha<180°,then cos3alpha =

Answers

Answered by amitnrw
3

Given :  Sinα  = 3/5

90° < α < 180°

To Find : cos3α

Solution:

90° < α < 180°  Hence  α lies in 2nd Quadrant

in 2nd Quadrant  Cos is negative

Sinα  = 3/5

cos²α = 1 - Sin²α

=>cos²α = 1 - (3/5)²

=> cos²α =  (4/5)²

=> cosα = ± 4/5

in 2nd Quadrant  Cos is negative

=> cosα = - 4/5

cos3α = 4cos³α - 3cosα

=> cos3α = 4(-4/5)³ - 3(-4/5)

=> cos3α =  -256/125  + 12/5

=> cos3α =  -256/125  + 300/125

=> cos3α =   44/125

cos3α =   44/125  = 0.352

Learn More:

Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...

brainly.in/question/22239477

Maximum value of sin(cos(tanx)) is(1) sint (2)

brainly.in/question/11761816

evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...

brainly.in/question/2769339

Answered by prakashkumarp445
2

Answer:

`(tan(18 0^(@)-alpha)cos(180^(@)-alpha)tan(90^(@)-alpha))/(sin(9 0^(@)+alpha)cos(9 0^(@)-alpha)tan(9 0^(@)+alpha)`, expression wherever it is defined, is equal to

Similar questions