Math, asked by swati1227, 1 year ago

If sin alpha and cos alpha are roots of the equation ax² + bx + c = 0,

prove that

a² - b² + 2ac = 0

OR

a² + 2ac = b² ​

Answers

Answered by Anonymous
31

\huge\orange{\boxed{\bold{Solution}}}

___________________________________________________

\bold {ax}^{2}  + \bold {bx} \:  + \bold c \:  = \bold 0 \\ \\ \bold {sin (\alpha)  \times cos (\alpha)}  =  \bold {\frac{ - b}{a} } \\ \\ \bold {sin (\alpha)  \times cos (\alpha)}  =  \bold {\frac{c}{a}}  \\ \\ \bold {[sin (\alpha)  + cos (\alpha) ]^{2}}  = \bold {{sin}^{2} (\alpha)  + 2sin \times cos (\alpha)  + \: {cos}^{2} (\alpha)}  \\   =  \bold {{sin}^{2} (\alpha)  +  {cos}^{2} (\alpha) + 2sin \times cos (\alpha)}  \\ \\ \bold {( \frac{ - b}{a})^{2}} = \bold {1 +  \frac{2c}{a}} \\ \\   \bold {\frac{ {b}^{2} }{ {a}^{2} }} \:  = \bold {1 +  \frac{2c}{a}}  \\   \\ \bold {{b}^{2}}  =    \bold {\frac{ {a}^{2}(a + 2c) }{a}}  \\  \\  \bold {{b}^{2}}  =  \:  \bold {{a}^{2}}  +  \: \bold {2ac}

\huge\underline\mathfrak\green{Hence\:proved}

___________________________________________________

\huge\mathbb\blue{THANK\:YUH!}

Answered by RvChaudharY50
13

see solution in image ..

Hope it helps you .

Attachments:
Similar questions