if sin ( alpha+beta)=1 and cos ( alpha-beta)=1 where alpha +beta<90 the the value of alpha and beta respectively equal to
Answers
Answered by
2
Answer:
The value of \cos(\alpha - \beta)\ is "" < strong > [tex]\dfrac{\sqrt{3} }{2}cos(α−β) is""<strong>[tex]
2
3
".
Step-by-step explanation:
We have,\sin(\alpha +\beta)\ = 1)sin(α+β) =1) \
⇒\sin(\alpha +\beta)\ = \sin(90\degree)sin(α+β) =sin(90°) \
∴ α + β = 90°
Let α = 60° and β = 30°
∴ \cos(\alpha - \beta)\ = \cos(60\degree - 30\degree) cos(α−β) =cos(60°−30°)
⇒ < /strong > \cos(\alpha - \beta)\ = \cos(30\degree)\ < strong > =\dfrac{\sqrt{3} }{2}</strong>cos(α−β) =cos(30°) <strong>=
2
3
Hence, the value of \cos(\alpha - \beta)\ is " < strong > [tex]\dfrac{\sqrt{3} }{2}cos(α−β) is"<strong>[tex]
2
3
".
Step-by-step explanation:
i hope its help full to you
Similar questions