Math, asked by nageshpilla227, 3 days ago

If sin(alpha+bita)/sin(alpha-bita)=a-b/a-b then prove that atanbita=btanalpha

Answers

Answered by mathdude500
6

Appropriate Question :-

\rm \: \dfrac{sin( \alpha +  \beta )}{sin(\alpha - \beta)}  = \dfrac{a + b}{a - b}, \: prove \: that \: a \: tan\beta = b \: tan\alpha  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \dfrac{sin( \alpha +  \beta )}{sin(\alpha - \beta)}  = \dfrac{a + b}{a - b}  \\

On applying Componendo and Dividendo, we get

\rm \: \dfrac{sin( \alpha +  \beta ) + sin(\alpha - \beta)}{sin(\alpha + \beta) - sin(\alpha - \beta)}  = \dfrac{a + b + a - b}{a + b - a + b}  \\

We know,

\boxed{ \rm{ \:sin(x + y) + sin(x - y) = 2sinx \: cosy \: }}  \\ \\ \boxed{ \rm{ \:sin(x + y) - sin(x - y) = 2cosx \: siny \: }} \\

So, using these results, we get

\rm \: \dfrac{2sin\alpha \: cos\beta}{2cos\alpha \: sin\beta}  = \dfrac{2a}{2b}  \\

\rm \: \dfrac{sin\alpha \: cos\beta}{cos\alpha \: sin\beta}  = \dfrac{a}{b}  \\

\rm \: \dfrac{tan\alpha}{tan\beta}  = \dfrac{a}{b}  \\

\rm\implies \:a \: tan\beta \:  =  \: b \: tan\alpha \\

Hence, Proved

\rule{190pt}{2pt}

Remark :-

If a : b :: c : d, then Componendo and Dividendo means

\boxed{ \rm{ \:\dfrac{a + b}{a - b}  = \dfrac{c + d}{c - d}  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(x  -  y) = sinx \: cosy \:  -  \: siny \: cosx}\\ \\ \bigstar \: \bf{sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx}\\ \\ \bigstar \: \bf{cos(x + y) = cosx \: cosy \: -  \: sinx \: siny}\\ \\ \bigstar \: \bf{cos(x - y) = cosx \: cosy \:+\: siny \: sinx}\\ \\ \bigstar \: \bf{tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany} }\\ \\ \bigstar \: \bf{tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany} }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions