Math, asked by sureshlimbu72, 2 months ago

If sin(alpha)+ sin(beta)= m and cos(alpha) + cos(beta)= n then prove that cos (alpha - beta) = 1÷2{(m^2 + n^2 - 2).​

Answers

Answered by Brâiñlynêha
92

Solution :-

As we know that

\bullet\sf\ \ Cos(\alpha-\beta)= Cos\alpha Cos\beta+Sin\alpha Sin\beta

Proof :-

By taking RHS -

\sf\ sin\alpha+ sin\beta=m\\ \\ \sf\ cos\alpha+cos\beta= n

Solution In attachment!

Attachments:
Answered by DARLO20
130

Gɪɴ :

\bf{\sin{\alpha}\:+\:\sin{\beta}\:=\:m} \\

Aɴ,

\bf{\cos{\alpha}\:+\:\cos{\beta}\:=\:n} \\

T Pʀғ :

  • \bf{\cos(\alpha\:-\:\beta)\:=\:\dfrac{1}{2}\:(m^2\:+\:n^2\:-\:2)} \\

S Pʀʀɪs :

\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{\cos{(\alpha\:-\:\beta)}\:=\:\cos\alpha\:\cos\beta\:+\:\sin\alpha\:\sin\beta}}}}}} \\

\pink\bigstar\:\:{\underline{\blue{\boxed{\bf{\purple{\sin^2\theta\:+\:\cos^2\theta\:=\:1\:}}}}}} \\

Pʀ :

We take R.H.S.

\bf{\dfrac{1}{2}\:(m^2\:+\:n^2\:-\:2)} \\

Now we calculate the value of 'm² + n²'.

:\rightarrow\:\bf{(\sin{\alpha}\:+\:\sin{\beta})^2\:+\:(\cos{\alpha}\:+\:\cos{\beta})^2} \\

:\rightarrow\:\bf{\Big(\sin^2{\alpha}\:+\:2\:{\sin\alpha}\:{\sin\beta}\:+\:\sin^2{\beta}\Big)\:+\:\Big(\cos^2{\alpha}\:+\:2\:{\cos\alpha}\:{\cos\beta}\:+\:\cos^2{\beta}\Big)} \\

:\rightarrow\:\bf{(\sin^2{\alpha}\:+\:\cos^2{\alpha})\:+\:(\sin^2{\beta}\:+\:\cos^2{\beta})\:+\:(2\:{\sin\alpha}\:{\sin\beta}\:+\:2\:{\cos\alpha}\:{\cos\beta})\:} \\

:\rightarrow\:\bf{1\:+\:1\:+\:2\:(\sin\alpha\:\sin\beta\:+\:\cos\alpha\:\cos\beta)\:} \\

:\rightarrow\bf{2\:+\:2\:\cos(\alpha\:-\:\beta)\:} \\

Now putting the value of 'm² + n²' in R.H.S, we get

\bf{\dfrac{1}{2}\:\Big\{2\:+\:2\:\cos(\alpha\:-\:\beta)\:-\:2\Big\}} \\

\bf{\dfrac{1}{2}\times{2\:\cos(\alpha\:-\:\beta)}} \\

\bf{\underline{\green{\boxed{\pink{\cos(\alpha\:-\:\beta)}}}}}\:(L.H.S) \\

\Large\bf{Therefore,}

★ L.H.S = R.H.S [Hence Proved]

Similar questions