Math, asked by kalpanakorellap6gme2, 27 days ago

If sinα and cosα are the roots of x²+ax+b=0, then for any real number α, the range of a is __________ and the range of b is ___________​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\:sin \alpha  \: and \: cos \alpha \: are \: roots \: of \:  {x}^{2}  + ax + b = 0}

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\:sin \alpha + cos \alpha =  - \dfrac{a}{1}

\bf\implies \:a =  - (sin \alpha + cos \alpha)

Now, To find the range of a, we have to find the range of - ( sinα + cosα )

Now, Consider,

\rm :\longmapsto\: - (sin \alpha + cos \alpha)

can be rewritten as

\rm \:  =  \:  \:  -  \sqrt{2}\bigg(\dfrac{1 }{ \sqrt{2} }sin \alpha  + \dfrac{1}{ \sqrt{2} } cos \alpha \bigg)

\rm \:  =  \:  \:  -  \sqrt{2}\bigg(cos\dfrac{\pi }{ 4 }sin \alpha  + sin\dfrac{\pi }{ 4 } cos \alpha \bigg)

\rm \:  =  \:  \:  - \sqrt{2}  sin\bigg(x + \dfrac{\pi }{ 4 } \bigg)

So, it means

\rm :\longmapsto\: \:   - (sin \alpha + cos \alpha)=  \:  \:  - \sqrt{2}  sin\bigg(x + \dfrac{\pi }{ 4 } \bigg)

\bf\implies \:a  \:   = \:  - \sqrt{2}  sin\bigg(x + \dfrac{\pi }{ 4 } \bigg)

Now, we know that,

\rm :\longmapsto\: - 1 \leqslant sin\bigg(x + \dfrac{\pi }{ 4 } \bigg) \leqslant 1

\rm :\longmapsto\: -  \sqrt{2}  \leqslant \:  -  \sqrt{2}  sin\bigg(x + \dfrac{\pi }{ 4 } \bigg) \:  \leqslant \sqrt{2}

\bf :\longmapsto\: -  \sqrt{2}  \leqslant \:  a\:  \leqslant \sqrt{2}

So, this is the range of a.

Now, we also know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\:sin \alpha \: cos \alpha = \dfrac{b}{1}

\rm :\implies\:b \:  =  \: sin \alpha \: cos \alpha

can be rewritten as

\rm :\implies\:b \:  =  \: \dfrac{1}{2}  \times (2sin \alpha \: cos \alpha)

\rm :\implies\:b \:  =  \: \dfrac{1}{2}  \times ( \: sin 2\alpha \: )

Now, we know,

\rm :\longmapsto\: - 1 \leqslant sin2 \alpha \leqslant 1

\rm :\longmapsto\: - \dfrac{1}{2}  \leqslant \dfrac{1}{2}sin2 \alpha \leqslant \dfrac{1}{2}

\rm :\longmapsto\: - \dfrac{1}{2}  \leqslant b \leqslant \dfrac{1}{2}

This, is the required range of b.

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta +   \beta  \gamma  +  \gamma  \alpha  =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions