If sin @ =1/2
then find the value of (tan 0 + coto)
Answers
Answer:
jfngohxkhkhxkhxoxksoydodpufupdulduldlyd kgxhldjlchlc hdlhdhlcjl kgxjlck mhxtkulckskjdulfjl
The value of the expression is 16/3
Step-by-step explanation:
Given that
\sin\theta=\frac{1}{2}sinθ=
2
1
The relation between cosine and sine function is
\begin{gathered}\cos\theta=\sqrt{1-\sin^2\theta}\\\\\cos\theta=\sqrt{1-(\frac{1}{2})^2}\\\\\cos\theta=\sqrt{1-\frac{1}{4}}\\\\\cos\theta=\frac{\sqrt{3}}{2}\end{gathered}
cosθ=
1−sin
2
θ
cosθ=
1−(
2
1
)
2
cosθ=
1−
4
1
cosθ=
2
3
Now find the value of tan and cot
\begin{gathered}\tan\theta=\frac{\\sin\theta}{\cos\theta}\\\\\tan\theta=\frac{1/2}{\sqrt3/2}\\\\\tan\theta=\frac{1}{\sqrt3}\end{gathered}
And
\begin{gathered}\cot\theta=\frac{1}{\tan\theta}\\\\\cot\theta=\frac{1}{1/\sqrt3}\\\\\cot\theta=\sqrt3\end{gathered}
cotθ=
tanθ
1
cotθ=
1/
3
1
cotθ=
3
Substituting these values in the given expression
\begin{gathered}(\tan\theta+\cot\theta)^2\\\\=(\frac{1}{\sqrt3}+\sqrt3)^2\\\\=(\frac{4}{\sqrt3}+3)^2\\\\=\frac{16}{3}\end{gathered}
(tanθ+cotθ)
2
=(
3
1
+
3
)
2
=(
3
4
+3)
2
=
3
16
#Learn More:
If cosec theta =3/2. Find the value of 2(cosec2 theta + cot2 theta)
pls follow me